Two‑phase simulation of entropy optimized mixed convection flow of two different shear‑thinning nanomaterials in thermal and mass diffusion systems with Lorentz forces

dc.contributor.authorSuresha, S.
dc.contributor.authorKhan, Umair
dc.contributor.authorSoumya, D. O.
dc.contributor.authorVenkatesh, P.
dc.contributor.authorGasmi, Hatem
dc.contributor.authorSunitha, M.
dc.contributor.authorZaib, Aurang
dc.contributor.authorAl‑Naghi, Ahmed
dc.contributor.authorKaroui, Hatem
dc.contributor.authorIshak, Anuar
dc.contributor.authorOjok, Walter
dc.date.accessioned2024-06-14T12:16:15Z
dc.date.available2024-06-14T12:16:15Z
dc.date.issued2024-01-04
dc.description.abstractThis research compares the momentum, thermal energy, mass diffusion and entropy generation of two shear thinning nanofluids in an angled micro-channel with mixed convection, nonlinear thermal radiation, temperature jump boundary condition and variable thermal conductivity effects. The approach was used to solve the Buongiorno nonlinear governing model. The effect of different parameters on the flow, energy, concentration, and entropy generating fields have been graphically illustrated and explained. The hyperbolic tangent nanoliquid has a better velocity than the Williamson nanofluid. The Williamson nanofluid has higher thermal energy and concentration than the hyperbolic tangent nanoliquid in the microchannel. The Grashof number, both thermal and solutal, increases the fluid flow rate throughout the flow system. The energy of the nanoliquid is reduced by the temperature jump condition, while the energy field of the nanoliquid is enhanced by the improving thermal conductivity value. The nanoliquids concentration rises as the Schmitt number rises. The irreversibility rate of the channel system is maximized by the variable thermal conductivity parameter.en_US
dc.description.sponsorshipScientific Research Deanship at University of Hail - Saudi Arabia through project number RG-23 082.en_US
dc.identifier.citationSuresha, S., Khan, U., Soumya, D. O., Venkatesh, P., Gasmi, H., Sunitha, M., Zaib, A., Karoui, H., Ishak, A., & Ojok, W. (2024). Two-phase simulation of entropy optimized mixed convection flow of two different shear-thinning nanomaterials in thermal and mass diffusion systems with Lorentz forces. Scientific Reports, 14(1), 1-17. https://doi.org/10.1038/s41598-023-50725-wen_US
dc.identifier.issn2045-2322
dc.identifier.urihttps://dir.muni.ac.ug/handle/20.500.12260/641
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectEntropyen_US
dc.subjectLorentz forcesen_US
dc.subjectMass diffusion systemsen_US
dc.subjectNanomaterialsen_US
dc.subjectShear‑thinningen_US
dc.titleTwo‑phase simulation of entropy optimized mixed convection flow of two different shear‑thinning nanomaterials in thermal and mass diffusion systems with Lorentz forcesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ojok_Article_2024_3.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: