Faculty of Agriculture and Environmental Sciences
Permanent URI for this community
Browse
Browsing Faculty of Agriculture and Environmental Sciences by Subject "Alternative protein source"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Recent advances in the utilization of insects as an ingredient in aquafeeds:(Elsevier, 2022-08-08) Maulu, Sahya; Langi, Sandra; Hasimuna, Oliver J.; Missinhoun, Dagoudo; Munganga, Brian P.; Hampuwo, Buumba M.; Gabriel, Ndakalimwe Naftal; Elsabagh, Mabrouk; Van Doan, Hien; Abdul Kari, Zulhisyam; Dawood, Mahmoud A.O.The aquafeed industry continues to expand in response to the rapidly growing aquaculture sector. However, the identification of alternative protein sources in aquatic animal diets to replace conventional sources due to cost and sustainability issues remains a major challenge. Recently, insects have shown tremendous results as potential replacers of fishmeal in aquafeed. The present study aimed to review the utilization of insects in aquafeeds and their effects on aquatic animals' growth and feed utilization, immune response and disease resistance, and fish flesh quality and safety. While many insect species have been investigated in aquaculture, the black soldier fly (Hermetia illucens), and the mealworm (Tenebrio molitor) are the most studied and most promising insects to replace fishmeal in aquafeed. Generally, insect rearing conditions and biomass processing methods may affect the product’s nutritional composition, digestibility, shelf life and required insect inclusion level by aquatic animals. Also, insect-recommended inclusion levels for aquatic animals vary depending on the insect species used, biomass processing method, and test organism. Overall, while an appropriate inclusion level of insects in aquafeed provides several nutritional and health benefits to aquatic animals, more studies are needed to establish optimum requirements levels for different aquaculture species at different stages of development and under different culture systems.Item Replacement of fishmeal using poultry-based protein sources in feeds for pikeperch (Sander lucioperca, Linnaeus, 1758) during grow out phase(Springer Nature, 2022-09-05) Langi, Sandra; Panana, Edson; Alloo, Ceder; Van Stappen, Gilbert; Meeus, WouterA 61-day growth experiment was carried out to evaluate the potential of a poultry-based protein (PBP) comprising of feather meal (FeM) and poultry meat and bone meal (PMBM), as a fishmeal (FM) substitute in diets of juvenile pikeperch (Sander lucioperca, L.). Pikeperch (initial body weight 113.12 g) were randomly distributed in groups of 250 fish in twelve 1.8 m3 circular recirculating aquaculture system (RAS) tanks, and fed four isonitrogenous (52% crude protein), isolipidic (17% crude lipid), and isocaloric (21.80 KJ/g energy) experimental diets. The feeds contained FM as the primary protein source (PBP0) or PBP replacing 20 (PBP20), 40 (PBP40), or 60% (PBP60) of the FM. Based on appetite and calculated uneaten feed, the feeding rate was initially set at 1.5% and subsequently reduced to 1% of the total tank biomass towards the end of the study. At the end of the experiment, the average feed intake ranged from 1.93 to 2.00 g/fish/day (p > 0.05). No adverse effects on growth and feed efficiency were observed in fish fed diets PBP0, PBP20, and PBP40. Particularly, the final body weight (FBW) (248.73, 240.11 g), feed conversion ratio (FCR) (0.86, 0.91), specific growth rate (SGR) (1.29, 1.35%/day), and protein efficiency ratio (PER) (2.20, 2.12) of fish fed PBP20 and PBP40 were not significantly different from the control PBP0 whose values ranged from 248.11 g, 0.89, 1.27%/day, and 2.18, respectively (p > 0.05). In all treatments, the condition factor (k) (1.31 to 1.33), hepatosomatic index (HSI) (2.35 to 2.70%), visceral somatic index (VSI) (6.87 to 7.19%), and whole-body composition of crude protein (57.77–58.28%) and crude lipid (23.85–26.85%) were not significantly influenced by the dietary PBP inclusion level (p > 0.05). However, whole-body ash content was significantly higher in PBP60 (14.66%) compared to the other treatments (12.57–14.43%) (p < 0.05). Based on the results from this study, up to 40% of FM can be replaced by PBP in diets for pikeperch juveniles without compromising growth performance and feed utilization.