Browsing by Author "Onyango, Silver"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Spatio-Temporal Variation in the Concentration of Inhalable Particulate Matter (PM10) in Uganda.(MDPI AG, 2019-05-17) Onyango, Silver; Parks, Beth; Anguma, Simon Katrini; Meng, QingyuLong-term particulate matter (PM10) measurements were conducted during the period January 2016 to September 2017 at three sites in Uganda (Mbarara, Kyebando, and Rubindi) representing a wide range of urbanization. Spatial, temporal and diurnal variations are assessed in this paper. Particulate matter (PM10) samples were collected for 24-h periods on PTFE filters using a calibrated pump and analyzed gravimetrically to determine the average density. Particulate levels were monitored simultaneously using a light scattering instrument to acquire real time data from which diurnal variations were assessed. The PM10 levels averaged over the sampling period at Mbarara, Kyebando, and Rubindi were 5.8, 8.4, and 6.5 times higher than the WHO annual air quality guideline of 20 µg·m−3, and values exceeded the 24-h mean PM10 guideline of 50 µg·m−3 on 83, 100, and 86% of the sampling days. Higher concentrations were observed during dry seasons at all sites. Seasonal differences were statistically significant at Rubindi and Kyebando. Bimodal peaks were observed in the diurnal analysis with higher morning peaks at Mbarara and Kyebando, which points to the impact of traffic sources, while the higher evening peak at Rubindi points to the influence of dust suspension, roadside cooking and open-air waste burning. Long-term measurement showed unhealthy ambient air in all three locations tested in Uganda, with significant spatial and seasonal differences.Item Validation of the atmospheric boundary layer height estimated from the MODIS atmospheric profile data at an equatorial site(MDPI, 2020-08-26) Onyango, Silver; Anguma, Simon Katrini; Andima, Geodfrey; Parks, BethThe atmospheric boundary layer height is important for constraining air pollution and meteorological models. This study attempted to validate the MODIS-estimated atmospheric boundary layer height (ABLH), and variation in the ABLH in Uganda was evaluated. The ABLH was estimated from MODIS data using the mixing ratio profile gradient method and compared to the ABLH estimated from radiosonde data using three different methods. Unlike in studies in other regions of the world, correlations between ABLH estimated using MODIS and radiosonde data were weak, implying limited usefulness of MODIS data for determining ABLH. However, the diurnal variation in MODIS-derived ABLH and particulate matter (PM10) was consistent with the expected inverse relationship between PM10 mass concentration and ABLH, and the mean MODIS-derived ABLH values were significantly lower during wet seasons than dry seasons, as expected.