Browsing by Author "Nakafu, Esther"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Apparent density, trypanosome infection rates and host preference of tsetse flies in the sleeping sickness endemic focus of Northwestern Uganda.(Springer Nature, 2021-11-29) Opiro, Robert; Opoke, Robert; Angwech, Harriet; Nakafu, Esther; Oloya, Francis A; Openy, Geoffrey; Njahira, Moses; Macharia, Mercy; Echodu, Richard; Malinga, Geoffrey M.; Opiyo, Elizabeth A.African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly’s age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.Item Spatial distribution of tsetse flies and trypanosome infection status in a vector genetic transition zone in northern Uganda(Journal of Parasitology Research, 2022-06-01) Opiro, Robert; Okello, Allele Moses; Opoke, Robert; Oloya, Francis A.; Nakafu, Esther; Iwiru, Teresa; Echodu, Richard; Malinga, Geoffrey M.; Bargul, Joel L.; Opiyo, Elizabeth A.Background. Tsetse flies are vectors of the genus Trypanosoma that cause African trypanosomiasis, a serious parasitic disease of people and animals. Reliable data on the vector distribution and the trypanosome species they carry is pertinent for planning sustainable control strategies. This study was carried out to estimate the spatial distribution, apparent density, and trypanosome infection rates of tsetse flies in two districts that fall within a vector genetic transition zone in northern Uganda. Materials and Methods. Capturing of tsetse flies was done using biconical traps deployed in eight villages in Oyam and Otuke, two districts that fall within the vector genetic transition zone in northern Uganda. Trapped tsetse flies were sexed and morphologically identified to species level and subsequently analyzed for detection of trypanosome DNA. Trypanosome DNA was detected using a nested PCR protocol based on primers amplifying the internal transcribed spacer (ITS) region of ribosomal DNA. Results. A total of 717 flies (406 females; 311 males) were caught, all belonging to the Glossina fuscipes fuscipes species. The overall average flies/trap/day (FTD) was (). Out of the 477 (201 male; 276 females) flies analyzed, 7.13% (34/477) were positive for one or more trypanosome species. Three species of bovine trypanosomes were detected, namely, Trypanosoma vivax, 61.76% (21/34), T. congolense, 26.47% (9/34), and T. brucei brucei, 5.88% (2/34), and two cases of mixed infection of T. congolense and T. brucei brucei, 5.88% (2/34). The infection rate was not significantly associated with the sex of the fly (generalized linear model (GLM), , , ) and district of origin (, , , ). However, trypanosome infection was highly significantly associated with the fly’s age based on wing fray category (, , , ), being higher among the very old than the young. Conclusion. The relatively high tsetse density and trypanosome infection rate indicate that the transition zone is a high-risk area for perpetuating animal trypanosomiasis. Therefore, appropriate mitigation measures should be instituted targeting tsetse and other biting flies that may play a role as disease vectors, given the predominance of T. vivax in the tsetse samples.