Browsing by Author "Keskinler, Bulent"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Boric acid recovery from wastewater by chromatographic separation and mathematical modeling(Elsevier, 2024-03-04) Kole, Zehra; Ocal, Zehra Betul; Omwene, Philip Isaac; Soydemir, Gulfem; Keskinler, Bulent; Karagunduz, AhmetThe new approaches in industrial wastewater management underscores the importance of reclaiming valuable materials. Within the boron industry, the generation of substantial wastewater containing preliminary boron species is a significant concern. This study focuses on recovering boric acid from boron production wastewater, addressing the challenge of separating impurities like sulfate, calcium, and magnesium. The methodology adopts chromatographic separation using a cation exchange resin in two forms: (1) Finex CS10GC cation exchanger in Na+ form and (2) Finex CS10GC cation exchanger in Ca2+/Mg2+ form. Notably, the Finex CS10GC ion exchanger in Na+ form achieves a separation efficiency of 95.5 % at a flow rate of 5 mL/min with a 0.20 bed volume (BV) loading. In contrast, the Ca2+/Mg2+ loaded resin achieves a separation efficiency of 23.3 % at the same flow rate. As the boron loading rate decreases to 10 %, the separation efficiency increases to 42.6 %. The flow rate also plays a crucial role, as an increase corresponds to a decrease in separation efficiency. Notably, the Finex CS10GC ion exchanger in Na+ form consistently exhibits superior separation efficiency and band resolution. A mathematical model is introduced to simulate the effective separation of boric acid from other impurities. The quality of the recovered boric acid conforms to the standard grade (Merck KGaA), exhibiting a purity level within the range of 99.5–100 %, suggesting substantial economic value. The proposed recovery process contributes significantly to environmental preservation by mitigating waste discharge, exemplifying a noteworthy commitment to resource conservation.Item Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: from lab to pilot scale(Science Direct, 2020-09-21) Ozbey-Unal, Bahar; Omwene, Philip Isaac; Yagcioglu, Meltem; Balcik-Canbolat, Çigdem; Karagunduz, Ahmet; Keskinler, Bulent; Dizge, NadirThe global increase in industrialization has resulted into water scarcity. Research on water use efficiency and water reclamation is paramount in addressing this scarcity. In this study, laboratory and on-site pilot scale tests were conducted for water recovery from an industrial wastewater treatment plant. Different RO membranes (BW30, HP, and LE) were investigated with chemical treatment and ceramic microfiltration (MF) as pretreatment steps. Laboratory studies were conducted in dead-end filtration mode, whereas pilot scale studies were performed in cross flow mode with two spiral wound membranes. The removal efficiencies ranged from 40.0-86.3% for COD, 97.6- 99% for SO42-, 69.2-94.9% for Cr ion, 89.3-100% for Pb ion, 66.3-98.2 for Fe ion, 97.5- 99.7% for Zn ion, 95.1-99.5% for Si ion, and 79.1-100% for total phosphorus (TP). For the laboratory studies with 80% water recovery, the permeate flux reduced from 27.2 to 7.1 L/m2h, 35.7 to 1.3 L/m2h and 25.6 to 0.8 L/m2h for BW30, LE, and HP, respectively. On the other hand, four different operation modes were investigated to determine the effect of each mode on membrane performance and fouling properties. Average permeate flux of 18.7 and 21.3 L/m2h, 12.7 and 12.8 L/m2h, 13.4 and 14.6 L/m2h, 12.5 and 14.1 L/m2h were recorded for LE and BW30 membranes in the first, second, third, and fourth modes, respectively. Membrane autopsies were performed by atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-rays (EDX). The system was effective in recovering the permeate to required industrial cooling and boiler water quality.