• Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of MR
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Asiku, Denis"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Comprehensive review on cryptographic techniques for securing internet of medical things: A state-of-the-art, applications, security attacks, mitigation measures, and future research direction.
    (Mesopotamian Journal of Artificial Intelligence in Healthcare, 2024-11-30) Wamusi, Robert; Asiku, Denis; Adebo, Thomas; Aziku, Samuel; Kabiito, Simon Peter; Zaward, Morish; Guma, Ali
    As healthcare becomes increasingly dependent on the Internet of Medical Things (IoMT) infrastructure, it is essential to establish a secure system that guarantees the confidentiality and privacy of patient data. This system must also facilitate the secure sharing of healthcare information with other parties within the healthcare ecosystem. However, this increased connectivity also introduces cybersecurity attacks and vulnerabilities. This comprehensive review explores the state-of-the-art in the IoMT, security requirements in the IoMT, cryptographic techniques in the IoMT, application of cryptographic techniques in securing the IoMT, security attacks on cryptographic techniques, mitigation strategies, and future research directions. The study adopts a comprehensive review approach, synthesizing findings from peer-reviewed journals, conference proceedings, book chapters, Books, and websites published between 2020 and 2024 to assess their relevance to cryptographic applications in IoMT systems. Despite advancements, cryptographic algorithms in IoMT remain susceptible to security attacks, such as man-in-the-middle attacks, replay attacks, ransomware attacks, cryptanalysis attacks, key management attacks, chosen plaintext/chosen ciphertext attacks, and side-channel attacks. While techniques like homomorphic encryption enhance security, their high computational and power demands pose challenges for resource-constrained IoMT devices. The rise of quantum computing threatens the efficacy of current cryptographic protocols, highlighting the need for research into quantum-resistant cryptography. The review identifies critical gaps in existing cryptographic research and emphasizes future directions, including lightweight cryptography, quantum-resistant methods, and artificial intelligence-driven security mechanisms. These innovations are vital for meeting the growing security requirements of IoMT systems and protecting against increasingly sophisticated threats.
  • Loading...
    Thumbnail Image
    Item
    A Survey on artificial intelligence and blockchain applications in cybersecurity for smart cities
    (2025-01-10) Asiku, Denis; Adebo, Thomas; Wamusi, Robert; Aziku, Samuel; Kabiito, Simon Peter; Zaward, Morish; Sallam, Malik; Ali, Guma; Mijwil, Maad M.
    Smart cities rapidly evolve into transformative ecosystems where advanced technologies work together to improve urban living. These interconnected environments use emerging technologies to offer efficient services and sustainable solutions for urban challenges. As these systems become more complex, their vulnerability to cybersecurity threats also increases. Integrating artificial intelligence (AI) and Blockchain technologies to address these challenges presents promising solutions that ensure secure and resilient infrastructures. This study provides a comprehensive survey of integrating AI, Blockchain, cybersecurity, and smart city technologies based on an analysis of peer-reviewed journals, conference proceedings, book chapters, and websites. Seven independent researchers reviewed relevant literature published between January 2021 and December 2024 using ACM Digital Library, Wiley Online Library, Taylor & Francis, Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, IGI Global, and Google Scholar. The study explores how AI can enhance threat detection, anomaly detection, and predictive analytics, enabling real-time responses to cyber threats. It examines various AI methodologies, including machine learning and deep learning, to identify vulnerabilities and prevent attacks. It discusses the role of Blockchain in securing data integrity, improving transparency, and providing decentralized control over sensitive information. Blockchain’s tamper-proof ledger and smart contract capabilities offer innovative solutions for identity management, secure transactions, and data sharing among smart city stakeholders. The study also highlights how combining AI and Blockchain can create robust cybersecurity frameworks, enhancing resilience against emerging threats. The survey concludes by outlining future research directions and offering recommendations for policymakers, urban planners, and cybersecurity professionals. This study identifies emerging trends and applications for enhancing the security and resilience of smart cities through innovative technological solutions. The survey provides valuable insights for researchers and practitioners who aim to utilize AI and Blockchain to improve smart city cybersecurity.
  • Loading...
    Thumbnail Image
    Item
    Fusion of blockchain, IoT, artificial intelligence, and robotics for efficient waste management in smart cities
    (Association of Talent under Liberty in Technology, 2025-08-09) Ali, Guma; Asiku, Denis; Mijwil, Maad M.; Adamopoulos, Ioannis; Dudek, Marek
    Rapid urbanization and population growth are accelerating waste generation in cities worldwide, posing serious environmental and socio-economic challenges. Traditional waste management systems, often centralized and infrastructure-deficient, struggle with inefficiencies, unscheduled collection, and a lack of real-time data. These limitations hinder progress toward smart and sustainable urban environments. Blockchain, the Internet of Things (IoT), Artificial Intelligence (AI), and Robotics are reshaping waste collection, sorting, and recycling. This review examines how these technologies integrate to create secure, efficient, and sustainable waste management in smart cities. An analysis of 184 studies published between January 2022 and July 2025 reveals key shortcomings in conventional waste management systems and showcases the benefits of smart waste management solutions. The results showed that cities are already using IoT-enabled smart bins, AI-driven route optimization, Blockchain for waste tracking, and robotic sorting. However, challenges such as data privacy concerns, limited Blockchain scalability, system interoperability gaps, sensor reliability issues, and high computational demands limit broader adoption. The review outlines future research priorities, including AI-powered waste forecasting, swarm robotics, real-time edge computing, and enhanced cybersecurity. By providing a roadmap for technological innovation and integration, this study supports policymakers, urban planners, and industry leaders in developing intelligent, cost-effective, and environmentally resilient waste management systems.
  • Loading...
    Thumbnail Image
    Item
    Integration of artificial intelligence, blockchain, and quantum cryptography for securing the Industrial Internet of Things (IIoT): Recent advancements and future trends
    (Mesopotamian Academic Press, 2025-03-27) Ali, Guma; Aziku, Samue; Kabiito, Simon Peter; Morish, Zaward; Adebo, Thomas; Wamusi, Robert; Asiku, Denis; Sallam, Malik; Mijwil, Maad M.; Ayad, Jenan; Salau, Ayodeji Olalekan; Dhoska, Klodian
    The swift growth of the Industrial Internet of Things (IIoT) offers tremendous potential to boost productivity, facilitate real-time decision-making, and automate procedures in various industries. However, as industries increasingly adopt IIoT, they face paramount data security, privacy, and system integrity challenges. Artificial intelligence (AI), Blockchain, and quantum cryptography are gaining significant attention as solutions to address these challenges. This paper comprehensively surveys advanced technologies and their potential applications for securing IIoT ecosystems. It reviews findings from 196 sources, including peer-reviewed journal articles, conference papers, books, book chapters, reports, and websites published between 2021 and 2025. The survey draws insights from leading platforms like Springer Nature, ACM Digital Library, Frontiers, Wiley Online Library, Taylor & Francis, IGI Global, Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, and Google Scholar. This paper explores AI-driven approaches to anomaly detection, predictive maintenance, and adaptive security mechanisms, demonstrating how machine learning (ML) and deep learning (DL) can identify and mitigate threats instantly. It also examines Blockchain technology, emphasizing its decentralized nature, immutability, and ability to secure data sharing and authentication within IIoT networks. The paper discusses quantum cryptography, which utilizes quantum mechanics for theoretically unbreakable encryption, ensuring secure communications in highly sensitive industrial environments. The integration of these technologies is analyzed to create a multi-layered defense against cyber threats, highlighting challenges in scalability, interoperability, and computational overhead. Finally, the paper reviews the current research, limitations and challenges, and future directions for securing IIoT with these advanced technologies. This survey offers valuable insights to researchers, engineers, and industry practitioners working to secure the expanding IIoT infrastructure.

University Repository :: copyright © 2026 Muni University

  • Library Website
  • Library OPAC
  • Library Ebooks (Intranet)
  • Powered by DSpace